All Issue

2019 Vol.24, Issue 3 Preview Page

Article

31 August 2019. pp. 389-399
Abstract
References
1
Armstrong, R.A., C. Lee, J.I. Hedges, S. Honjo and S.G. Wakeham, 2002. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Research Part Ⅱ, 49: 219-236.
10.1016/S0967-0645(01)00101-1
2
Broecker, W.S. and S. Sutherland, 2000. Distribution of carbonate ion in the deep ocean: Support for a post-Little Ice Age change in Southern Ocean ventilation? Geochem. Geophysics Geosystems, 1(1).
10.1029/2000GC000039
3
Chang, P.-H. and A. Isobe, 2003. A nemerical study on the Changjiang diluted water in the Yellow and East China Seas. J. Geophys. Res., 108(C9): 15-1-17.
10.1029/2002JC001749
4
Chen, C.-T.A., S.-L. Wang and A.S. Bychkov, 1995. Carbonate chemistry of the Sea of Japan. J. Geophysic. Res., 100(C7): 13737-13745.
10.1029/95JC00939
5
Chen, C.-T.A., H.-K. Lui, D.-H. Hsieh, T. Yanagi, N. Kosugi, M. Ishii and G.-C. Gong, 2017. Deep oceans may acidify faster than anticipated due to global warming. Nature Climate Change, 7(12): 890-894.
10.1038/s41558-017-0003-y
6
Dickson, A,G,, C.L. Sabine and J.R. Christian, 2007. Guide to best practices for ocean CO2 measurement. Sidney, British Columbia, North Pacific Marine Science Organization, pp 39-87
7
Dickson, A.G. and F.J. Millero, 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Research Part Ⅰ, 34: 1733-1743.
10.1016/0198-0149(87)90021-5
8
Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J. Kleypas, V.J. Fabry and F.J. Millero, 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 305: 362-366.
10.1126/science.109732915256664
9
Gattuso, J.-P., J. Biyma, M. Gehlen, U. Riedbesell and C. Turly, 2011. Ocean acidification: knowns, unknowns, and perspectives. In: Ocean acidification, edited by Gattuso, J.-P. and L. Hansson, Oxford University Press, Oxford, New York, pp 291-311.
10
Gattuso, J.-P. and L. Hansson, 2011. Ocean acidification: background and history. In: Ocean acidification, edited by Gattuso, J.-P. and L. Hansson, Oxford University Press, Oxford, New York, pp 1-20.
11
Goodwin, P. and J.M. Lauderdale, 2013. Carbonate ion concentrations, ocean carbon storage, and atmospheric CO2. Global Biogeochemical Cycles, 27: 882-893.
10.1002/gbc.20078
12
Gruber, N. and J.L. Sarmiento, 2002. Large-scale biogeochemical/physical interactions in elemental cycles. In: The sea: biological-physical interactions in the oceans, edited by Robinson, A.R., J.J. McCarthy and B.J. Rothschild, John Wiley and Sons, Inc., New York, pp 337-399.
13
Ingle, S.E., 1975. Solubility of calcite in the ocean. Mar. Chem., 3: 301-319.
10.1016/0304-4203(75)90010-9
14
Kim, M., J. Hwang, T.K. Rho, T. Lee, D.-J. Kang, K.-I. Chang, S. Noh, H.T. Joo, J.H. Kwak, C.-K. Kang and K.-R. Kim, 2017. Biogeochemical properties of sinking particles in the southwestern part of the East Sea (Japan Sea). J. Mar. Sys., 167: 33-42.
10.1016/j.jmarsys.2016.11.001
15
Kim, J.-Y., D.-J. Kang, T. Lee and K.-R. Kim, 2014. Long-term trend of CO2 and ocean acidification in the surface water of the Ulleung Basin, the East/Japan Sea inferred from the underway observational data. Biogeosciences, 11: 2443-2454.
10.5194/bg-11-2443-2014
16
Kim, T.-W., K. Lee, R.A. Feely, C.L. Sabine, C.-T.A. Chen, H.J. Jeong, K.Y. Kim, 2010. Prediction of Sea of Japan (East Sea) acidification over the past 40 years using a multiparameter regression model. Global Biogeochemical Cycles, 24: GB30053.
10.1029/2009GB003637
17
Kwak, J.H., J. Hwang, E.J. Choy, H.J. Park, D.-J. Kang, T. Lee, K.-I. Chang, K.-R. Kim and C.-K. Kang, 2013. High primary productivity and f-ratio in summer in the Ulleung Basin of East/Japan Sea. Deep-Sea Research Part Ⅰ, 79: 74-85.
10.1016/j.dsr.2013.05.011
18
Le Quéré, C., R.M. Andrew, P. Friedlingstein, S. Sitch, J. Hauck, J. Pongratz, P.A. Pickers, J.I. Korsbakken, G.P. Peters, J.G. Canadell, A. Arneth, V.K. Arora, L. Barbero, A. Bastos, L. Bopp, F. Chevallier, L.P. Chini, P. Ciais, S.C. Doney, T. Gkritzalis, D.S. Goll, I. Harris, V. Haverd, F.M. Hoffman, M. Hoppema, R.A. Houghton, G. Hurtt, T. Ilyina, A.K. Jain, T. Johannessen, C.D. Jones, E. Kato, R.F. Keeling, K.K. Goldewijk, P. Landschützer, N. Lefèvre, S. Lienert, Z. Liu, D. Lombardozzi, N. Metzl, D.R. Munro, M.S. Nabel, S.I. Nakaoka, C. Neill, A. Olsen, T. Ono, P. Patra, A. Peregon, W. Peters, P. Peylin, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, M. Rocher, C. Rödenbeck, U. Schuster, J. Schwinger, R. Séférian, I. Skjelvan, T. Steinhoff, A. Sutton, P.P. Tans, H. Tian, B. Tilbrook, F.N. Tubiello, I.T. van der Laan-Luijkx, G.R. van der Werf, N. Viovy, A.P. Walker, A.J. Wiltshire, R. Wright, S. Zaehle and B. Zheng, 2018. Global Carbon Budget 2018. Earth Syst. Sci. Data, 10: 2141-2194, https://doi.org/10.5194/essd-10-2141-2018.
19
Lewis, E. and D. Wallace, 1998. Program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.
2o
Mehrbach, C., C.H. Cullberson, J.E. Hawley and R.M. Pytkowicz, 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr., 18(6): 897-907.
10.4319/lo.1973.18.6.0897
21
Millero, F.J., 1979. The thermodynamics of the carbonate system in seawater. Geochem. Cosmochim. Acta, 43: 1651-1661.
10.1016/0016-7037(79)90184-4
22
Millero, F.J., 1995. Thermodynamics of the carbon dioxide system in the oceans. Geochem. Cosmochim. Acta, 59: 661-677.
10.1016/0016-7037(94)00354-O
23
Mussi, A., 1983. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. American Journal of Science, 283: 781-799.
10.2475/ajs.283.7.780
24
Olafsson, J., S.R. Olafsdottir, A. Benoit-Cattin, M. Danielsen, T.S. Arnarson and T. Takahashi, 2009. Rate of Iceland Sea acidification from time series measurements. Biogeosciences, 6: 2661-2668.
10.5194/bg-6-2661-2009
25
Orr, J.C., 2011. Ocean acidification: Recent and future changes in ocean carbonate chemistry. In: Ocean acidification, edited by Gattuso, J.-P. and L. Hansson, Oxford University Press, Oxford, New York, pp 41-66.
26
Orr, J.C., J.-M. Epitalon, A.G. Dickson, J.-P. Gattuso, 2018. Routine uncertainty propagation for the marine carbon dioxide system. Mar. Chem., 207: 84-107, doi:10.1016/j.marchem.2018.10.006.
10.1016/j.marchem.2018.10.006
27
Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R.M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R.G. Najjar, G.-K. Plattner, K.B. Rodgers, C.L. Sabine, J.L. Sarmiento, R. Schlitzer, R.D. Slater, I.J. Totterdell, M.-F. Weirig, Y. Yamanaka and A. Yool, 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437: 681-686.
10.1038/nature0409516193043
28
Park, G.-H., K. Lee, P. Tishchenko, D.-H. Min, M.J. Warner, L.D. Talley, D.-J. Kang and K.-R. Kim, 2006. Large accumulation of anthropogenic CO2 in the East (Japan) Sea and its significant impact on carbonate chemistry. Global Biogeochemical Cycles, 20: GB4013.
10.1029/2005GB002676
29
Steinacher, M., F. Joos, T.L. Frolicher, G.-K. Plattner and S.C. Doney, 2009. Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences, 6: 515-533.
10.5194/bg-6-515-2009
30
Tishchenko, P.Y., G.Y. Pavlova and E.M. Shkirnikova, 2012. A new look at the alkalinity of the Sea of Japan. Oceanography, 52(1): 21-33.
10.1134/S0001437011060191
31
Tsunogai, S., Y.W. Watanabe, K. Harada, S. Watanabe, S. Saito and M. Nakajima, 1993. Dynamics of the Japan Sea deep water studied with chemical and radiochemical tracers. In: Deep ocean circulation, physical and chemical aspects, edited by Teramoto T., Elsevier, Amsterdam, pp 105-119.
10.1016/S0422-9894(08)71321-7
32
Watanabe, Y.W., S. Watanabe and S. Tsunogai, 1991. Tritium in the Japan Sea and the renewal time of the Japan Sea deep water. Marine Chemistry, 34: 97-108.
10.1016/0304-4203(91)90016-P
33
Yoon S.-T., K.-I. Chang, S.H. Nam, T.K. Rho, D.-J. Kang, T. Lee, K.-A. Park, V. Lobanov, D. Kaplunenko, P. Tishchenko and K.-R. Kim, 2018. Re-initiation of bottom water formation in the East Sea (Japan Sea) in a warming world. Scientific Rep., 8: 1-10.
10.1038/s41598-018-19952-429371648PMC5785475
Information
  • Publisher :The Korean Society of Oceanography
  • Publisher(Ko) :한국해양학회
  • Journal Title :The Sea Journal of the Korean Society of Oceanography
  • Journal Title(Ko) :한국해양학회지 바다
  • Volume : 24
  • No :3
  • Pages :389-399
  • Received Date : 2019-07-01
  • Revised Date : 2019-08-22
  • Accepted Date : 2019-08-22
Journal Informaiton The Sea Journal of the Korean Society of Oceanography The Sea Journal of the Korean Society of Oceanography
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close