All Issue

2021 Vol.26, Issue 2 Preview Page

Note

31 May 2021. pp. 135-144
Abstract
References
1
Anderson, C.H., R.W. Murray, A.G. Dunlea, L. Giosan, C.W. Kinsley, D. McGee and R. Tada, 2020. Aeolian delivery to Ulleung Basin, Korea (Japan Sea), during development of the East Asian Monsoon through the last 12 Ma. Geological Magazine, 157: 806-817. 10.1017/S001675681900013X
2
Ashley, G.M., 1978. Interpretation of polymodal sediments. Journal of Geology, 86: 411-421. 10.1086/649710
3
Bahk, J.J., I.K. Um and J.H. Jang, 2021. Lateral sediment transport and late Quaternary changes of eolian sedimentation in the East Sea (Japan Sea). Journal of Asian Earth Sciences, 208: 104672. 10.1016/j.jseaes.2021.104672
4
Chun, J.H., D. Cheong, K. Ikehara and S.J. Han, 2007. Age of the SKP-I and SKP-II tephras from the southern East Sea/Japan Sea: Implications for interstadial events recorded in sediment from marine isotope stages 3 and 4. Palaeogeography Palaeoclimatology Palaeoecology, 247(1-2): 100-114. 10.1016/j.palaeo.2006.11.024
5
Clark, M.W., 1976. Some methods for statistical analysis of multimodal distributions and their application to grain-size data. Journal of the International Association for Mathematical Geology, 8: 267-282. 10.1007/BF01029273
6
Dietze, E., K. Hartman, B. Diekmann, J. Ijmker, F. Lehmkuhl, S. Opitz, , G. Stauch, B. Wünneman and A. Borchers, 2012. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sedimentary Geology., 243-244: 169-180. 10.1016/j.sedgeo.2011.09.014
7
Folk, R.L., 1954. The distinction between grain size and mineral composition in sedimentary-rock nomenclature. Journal of Geology, 62: 344-359. 10.1086/626171
8
Furuta, T., K. Fujioka and F. Arai, 1986. Widespread submarine tephras around Japan-petrographic and chemical properties. Marine Geology., 72: 125-142. 10.1016/0025-3227(86)90103-9
9
Hamann, Y., W. Ehrmann, G. Schmiedl, S. Krüger, J.-B. Stuut and T. Kuhnt, 2008. Sedimentation processes in the Eastern Mediterranean Sea during the Late Glacial and Holocene revealed by end-member modelling of the terrigenous fraction in marine sediments. Marine Geology., 248: 97-114. 10.1016/j.margeo.2007.10.009
10
Ikehara, K., 2015. Marine tephra in the Japan Sea sediments as a tool for paleoceanography and paleoclimatology. Progress in Earth and Planetary Science, 2: 36. 10.1186/s40645-015-0068-z
11
Jang, J.H., J.J. Bahk, E.J. Kim and I.K. Um, 2020. Characteristics and Paleoceanographic Implications of Grain-size Distributions of Biogenic Components in Sediments from the South Korea Plateau (East Sea). Ocean and Polar Research, 42: 249-261.
12
Lee, S., I. Seo and K. Hyeong, 2019. Reconstruction of changes in eolian particle deposition across the mid-pleistocene transition in the central part of the North Pacific. Ocean and Polar Research, 41: 275-288.
13
Lisiecki, L.E. and M.E.A. Raymo, 2005. Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20: PA1003. 10.1029/2004PA001071
14
Nagashima, K., R. Tada, A. Tani, Y. Sun, Y. Isozaki, S. Toyoda and H. Hasegawa, 2011. Millennial-scale oscillations of the westerly jet path during the last glacial period. Journal of Asian Earth Sciences, 40: 1214-1220. 10.1016/j.jseaes.2010.08.010
15
Nagashima, K., R. Tada, H. Matsui, T. Irino, A. Tani and A. Toyoda, 2007. Orbital- and millennial-scale variations in Asian dust transport path to the Japan Sea. Palaeogeography Palaeoclimatology Palaeoecology, 247: 144-161. 10.1016/j.palaeo.2006.11.027
16
Paterson, G.A. and D. Heslop, 2015. New methods for unmixing sediment grain size data. Geochemistry Geophysics Geosystems, 16: 4494-4506. 10.1002/2015GC006070
17
Rea, D.K., 1994. The paleoclimatic record provided by eolian deposition in the deep sea: The geologic history of wind. Reviews of Geophysics 32: 159-195, 10.1029/93RG03257.
18
Sheridan, M.F., K.H. Wohletz and J. Dehn, 1987. Discrimination of grain-size subpopulations in pyroclastic deposits. Geology, 15: 367-370. 10.1130/0091-7613(1987)15<367:DOGSIP>2.0.CO;2
19
Tada, R., T. Irino, K. Ikehara and the Expedition 346 Scientists, 2018. High-resolution and high-precision correlation of dark and light layers in the Quaternary hemipelagic sediments of the Japan Sea recovered during IODP Expedition 346. Progress in Earth and Planetary Sciences, 5: 19.
20
Tada, R., R.W. Murray, C.A. Alvarez Zarikian, and the Expedition 346 Scientists, 2015. Proceedings of the International Ocean Discovery Program 346, College Station, TX.
21
van Hateren, J.A., M.A. Prins, and R.T. van Balen, 2018. On the genetically meaningful decomposition of grain-size distributions: A comparison of different end-member modelling algorithms. Sedimentary Geology, 375: 49-71. 10.1016/j.sedgeo.2017.12.003
22
Weltje, G.J., 1997, End-member modelling of compositional data: Numerical‐statistical algorithms for solving the explicit mixing problem. Journal of the International Association for Mathematical Geology, 29: 503-549. 10.1007/BF02775085
23
Weltje, G.J. and M.A. Prins, 2007. Genetically meaningful decomposition of grain-size distributions. Sedimentary Geology, 202: 409-424. 10.1016/j.sedgeo.2007.03.007
Information
  • Publisher :The Korean Society of Oceanography
  • Publisher(Ko) :한국해양학회
  • Journal Title :The Sea Journal of the Korean Society of Oceanography
  • Journal Title(Ko) :한국해양학회지 바다
  • Volume : 26
  • No :2
  • Pages :135-144
  • Received Date : 2021-03-10
  • Revised Date : 2021-04-15
  • Accepted Date : 2021-04-19
Journal Informaiton The Sea Journal of the Korean Society of Oceanography The Sea Journal of the Korean Society of Oceanography
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close