All Issue

2025 Vol.30, Issue 2 Preview Page

Review

31 May 2025. pp. 121-133
Abstract
References
1

An, S.-U., J.-S. Mok, S.-H. Kim, J.-H. Choi and J.-H. Hyun, 2019. A large artificial dyke greatly alters partitioning of sulfate and iron reduction and resultant phosphorus dynamics in sediments of the Yeongsan River estuary, Yellow Sea. Sci. Total Environ., 665: 752-761.

10.1016/j.scitotenv.2019.02.05830790748
2

Andrieux-Loyer, F., A. Azandegbé, F. Caradec, X. Philippon, R. Kérouel, A. Youenou and J.-L. Nicolas, 2014. Impact of oyster farming on diagenetic processes and the phosphorus cycle in two estuaries (Brittany, France). Aquat. Geochem., 20: 573-611.

10.1007/s10498-014-9238-7
3

Andrieux, F. and A. Aminot, 1997. A two-year survey of phosphorus speciation in the sediments of the Bay of Seine (France). Cont. Shelf Res., 17: 1229-1245.

10.1016/S0278-4343(97)00008-3
4

Anschutz, P. and J. Deborde, 2016. Spectrophotometric determination of phosphate in matrices from sequential leaching of sediments. Limnol. Oceanogr. Methods, 14: 245-256.

10.1002/lom3.10085
5

Anschutz, P., G. Chaillou and P. Lecroart, 2007. Phosphorus diagenesis in sediment of the Thau Lagoon. Estuar. Coast. Shelf Sci., 72: 447-456.

10.1016/j.ecss.2006.11.012
6

Bouwman, L., A. Beusen, P.M. Gilbert, C. Overbeek, M. Pawlowski, J. Herrera, S. Mulsow, R. Yu and M. Zhou, 2013. Mariculture: significant and expanding cause of coastal nutrient enrichment. Environ. Res. Lett., 8: 044026.

10.1088/1748-9326/8/4/044026
7

Brock, J. and H.N. Schulz-Vogt, 2011. Sulfide induces phosphate release from polyphosphate in cultures of a marine Beggiatoa strain. The ISME J., 5: 497-506.

10.1038/ismej.2010.13520827290PMC3105714
8

Canfield, D.E., B. Thamdrup and E. Kristensen, 2005. Aquatic Geomirobiology. Amsterdam: Elsevier, 640 pp.

9

Choi, A., B. Kim, J.-S. Mok, J. Yoo, J.B. Kim, W.-C. Lee and J.-H. Hyun, 2020. Impact of finfish aquaculture on biogeochemical processes in coastal ecosystems and elemental sulfur as a relevant proxy for assessing farming condition. Mar. Pollut. Bull., 150: 110635.

10.1016/j.marpolbul.2019.11063531910514
10

Choi, A., H. Cho, B. Kim, H.C. Kim, R.-H. Jung, W.-C. Lee and J.-H. Hyun, 2018. Effects of finfish aquaculture on biogeochemistry and bacterial communities associated with sulfur cycles in highly sulfidic sediments. Aquacult. Environ. Interact., 10: 413-427.

10.3354/aei00278
11

Choi, A., T.K. Lee, H. Cho, W.-C. Lee and J.-H. Hyun, 2022. Shifts in benthic bacterial communities associated with farming stages and a microbiological proxy for assessing sulfidic sediment conditions at fish farms. Mar. Pollut. Bull., 178: 113603.

10.1016/j.marpolbul.2022.11360335390629
12

David, C.P.C., Y.Y. Sta. Maria, F.P. Siringan, J.M. Reotita, P.B. Zamora, C.L. Villanoy, E.Z. Sombrito and R.V. Azanza, 2009. Coastal pollution due to increasing nutrient flux in aquaculture sites. Environ. Geol., 58: 447-454.

10.1007/s00254-008-1516-5
13

Diaz, R.J. and R. Rosenberg, 2008. Spreading dead zones and consequences for marine ecosystems. Science, 321: 926-929.

10.1126/science.115640118703733
14

FAO (Food and Agriculture Organization of the United Nations), 2024. The State of World Fisheries and Aquaculture 2024 - Blue Transformation in action. Rome.

15

Ferrera, C.M., A. Watanabe, T. Miyajima, M.L. San Diego-McGlone, N. Morimoto, Y. Umezawa, E. Herrera, T. Tsuchiya, M. Yoshikai and K. Nadaoka, 2016. Phosphorus as a driver of nitrogen limitation and sustained eutrophic conditions in Bolinao and Anda, Philippines, a mariculture-impacted tropical coastal area. Mar. Pollut. Bull., 105: 237-248.

10.1016/j.marpolbul.2016.02.02526936120
16

Ferron, S., T. Ortega and J.M. Forja, 2009. Benthic fluxes in a tidal salt marsh creek affected by fish farm activities: Río San Predo (Bay of Cádiz, SW Spain). Mar. Chem., 113: 50-62.

10.1016/j.marchem.2008.12.002
17

Goldhammer, T., V. Brüchert, T.G. Ferdelman and M. Zabel, 2010. Microbial sequestration of phosphorus in anoxic upwelling sediments. Nat. Geosci., 3: 557-561.

10.1038/ngeo913
18

Holby, O. and P.O.J. Hall, 1991. Chemical fluxes and mass balances in a marine fish cage farm. II. Phosphorus. Mar. Ecol. Prog. Ser., 70: 263-272.

10.3354/meps070263
19

Holmer, M. and M.S. Fredericksen, 2007. Stimulation of sulfate reduction rates in Mediterranean fish farm sediments inhabited by the seagrass Posidonia oceanica. Biogeochemistry, 85: 169-184.

10.1007/s10533-007-9127-x
20

Holmer, M., C.M. Duarte, A. Heilskov, B. Olesen and J. Terrados, 2003. Biogeochemical conditions in sediments enriched by organic matter from net-pen fish farms in the Bolinao area, Philippines. Mar. Pollut. Bull., 46: 1470-1479.

10.1016/S0025-326X(03)00281-914607544
21

Holmer, M., D. Wildish and B. Hargrave, 2005. Organic enrichment from marine finfish aquaculture and effects on sediment biogeochemical processes. Hdb. Env. Chem., 5: 181-206.

10.1007/b136010
22

Holmer, M., M. Argyrou, T. Dalsgaard, R. Danovaro, E. Diaz-Almela, C.M. Duarte, M. Frederiksen, A. Grau, I. Karakassis, N. Marbá, S. Mirto, M. Pérez, A. Pusceddu and M. Tsapakis, 2008. Effects of fish farm waste on Posidonia oceanica meadows: Synthesis and provision of monitoring and management tools. Mar. Pollut. Bull., 56: 1618-1629.

10.1016/j.marpolbul.2008.05.02018614182
23

Holmer, M., N. Marbá, J. Terrados, C.M. Duarte and M.D. Fortes, 2002. Impacts of milkfish (Chanos chanos) aquaculture on carbon and nutrient fluxes in the Bolinao area, Philippines. Mar. Pollut. Bull., 44: 685-696.

10.1016/S0025-326X(02)00048-612222893
24

Hou, L.J., M. Liu, Y. Yang, D.N. Ou, X. Lin, H. Chen and S.Y. Xu, 2009. Phosphorus speciation and availability in intertidal sediments of the Yangtze Estuary, China. Appl. Geochem., 24: 120-128.

10.1016/j.apgeochem.2008.11.008
25

Husa, V., T. Kutti, A. Ervik, K. Sjøtun, P.K. Hansen and J. Aure, 2014. Regional impact from fin-fish farming in an intensive production area (Hardangerfjord, Norway). Mar. Biol. Res., 10: 241-252.

10.1080/17451000.2013.810754
26

Hwang, D.-W., H. Hwang, G. Lee, S. Kim, S. Park and S.-P. Yoon, 2021. Organic matter and heavy metals pollution assessment of surface sediment from a fish farming area in Tongyoung-Geoje coast of Korea. J. Kor. Soc. Mar. Environ. Saf., 27(4): 510-520.

10.7837/kosomes.2021.27.4.510
27

Hyun, J.-H., S.-H. Kim, J.-S. Mok, J.S. Lee, S.-U. An and W.-C. Lee, 2013. Impacts of long-line aquaculture of Pacific oyster (Crassostrea gigas) on sulfate reduction and diffusive nutrient flux in the coastal sediments of Jinhae-Tongyeong, Korea. Mar. Pollut. Bull., 74: 187-198.

10.1016/j.marpolbul.2013.07.00423896400
28

Islam, M.S., 2005. Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development. Mar. Pollut. Bull., 50: 48-61.

10.1016/j.marpolbul.2004.08.00815664033
29

Jensen, H.S., K.J. McGlathery, R. Marino and R.W. Howarth, 1998. Forms and availability of sediment phosphorus in carbonate sand of Bermuda seagrass beds. Limnol. Oceanogr., 43(5): 799-810.

10.4319/lo.1998.43.5.0799
30

Jia, B., Y. Tang, L. Tian, L. Franz, C. Alewell and J.-H. Huang, 2015. Impact of fish farming on phosphorus in reservoir sediments. Sci. Rep., 5: 16617.

10.1038/srep1661726577441PMC4649609
31

Joshi, S.R., R.K. Kukkadapu, D.J. Burdige, M.E. Bowden, D.L. Sparks and D.P. Jaisi, 2015. Organic matter remineralization predominates phosphorus cycling in the mid-bay sediments in the Chesapeake Bay. Environ. Sci. Technol., 49: 5887-5896.

10.1021/es505961725633477
32

Jung, R.H., S.-P. Yoon, S. Park, S.-J. Hong, Y.J. Kim and S. Kim, 2023. Introduction of the benthic health index used in fisheries environment assessment. J. Kor. Soc. Mar. Environ. Saf., 29(7): 779-793.

10.7837/kosomes.2023.29.7.779
33

Karakassis, I., M. Tsapakis and E. Hatziyanni, 1998. Seasonal variability in sediment profiles beneath fish farm cages in the Mediterranean. Mar. Ecol. Prog. Ser., 162: 243-252.

10.3354/meps162243
34

Kassila, J., M. Hasnaoui, M. Droussi, M. Loudiki and A. Yahyaoui, 2001. Relation between phosphate and organic matter in fish-pond sediments of the Deroua fish farm (Béni-Mellal, Morocco): implications for pond management. Hydrobiologia, 450: 57-70.

10.1023/A:1017547600678
35

Kim, D. and K.H. Kim, 2010. Phosphorus speciation and bioavailability in intertidal sediments of Keunso Bay, Yellow Sea during summer and winter. Ocean Polar Res., 32(3): 177-186.

10.4217/OPR.2010.32.3.177
36

KMI (Korea Maritime Institute), 2021. Korea Maritime Institute Report on the Analysis on Marine and Fisheries Sectors (2020), Using 2016-2017 Input-Output Tables. pp. 57-80.

37

KOSIS (Korean Statistical Information Service), 2024. Korean Statistical Information Service. Available at: Website. https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1EW0003&conn_path=I2 (Accessed 24 Feb 2025).

38

Kraal, P. and C.P. Slomp, 2014. Rapid and extensive alteration of phosphorus speciation during oxic storage of wet sediment samples. PLoS ONE, 9: e96859.

10.1371/journal.pone.009685924802813PMC4011856
39

Kraal, P., E.D. Burton, A.L. Rose, B.D. Kocar, R.S. Lockhart, K. Grice, R.T. Bush, E. Tan and S.M. Webb, 2015. Sedimentary iron-phosphorus cycling under contrasting redox conditions in a eutrophic estuary. Chem. Geol., 392: 19-31.

10.1016/j.chemgeo.2014.11.006
40

Kraal, P., E.D. Burton, A.L. Rose, M.D. Cheetham, R.T. Bush and L.A. Sullivan, 2013. Decoupling between water column oxygenation and benthic phosphate dynamics in a shallow eutrophic estuary. Environ. Sci. Technol., 47: 3114-3121.

10.1021/es304868t23477454
41

Kraal, P., N. Dijkstra, T. Behrends and C.P. Slomp, 2017. Phosphorus burial in sediments of the sulfide deep Black Sea: Key roles for adsorption by calcium carbonate and apatite authigenesis. Geochim. Cosmochim. Acta, 204: 140-158.

10.1016/j.gca.2017.01.042
42

Lee, G., D.-W. Hwang, H. Hwang, J.-H. Park, H.-C. Kim and J.-N. Kwon, 2017. Distribution and pollution status of organic matter and heavy metals in surface sediment around Goseong Bay, a shellfish farming area, Korea. J. Kor. Soc. Mar. Environ. Saf., 23(6): 699-709.

10.7837/kosomes.2017.23.6.699
43

Lomnitz, U., S. Sommer, A.W. Dale, C.R. Löscher., A. Noffke, K. Wallmann and C. Hensen, 2016. Benthic phosphorus cycling in the Peruvian oxygen minimum zone. Biogeosciences, 13: 1367-1386.

10.5194/bg-13-1367-2016
44

Matijević, S., G. Kušpilić, Z. Kljaković-Gašpić and D. Bogner, 2008. Impact of fish farming on the distribution of phosphorus in sediments in the middle Adriatic area. Mar. Pollut. Bull., 56: 535-548.

10.1016/j.marpolbul.2007.11.01718187162
45

MOF (Ministry of Oceans and Fisheries), 2016. Establishment of criteria for fishery environments. MOF, Sejong (in Korean).

46

Mok, J.-S., A. Choi, B. Kim, S.-U. An, W.-C. Lee, H.C. Kim, J. Kim, C. Yoon and J.-H. Hyun, 2021. Phosphorus dynamics associated with organic carbon mineralization by reduction of sulfate and iron in sediment exposed to fish farming. Front. Mar. Sci., 8: 645449.

10.3389/fmars.2021.645449
47

Morata, T., S. Falco, I. Gadea, J. Sospedra and M. Rodilla, 2015. Environmental effects of a marine fish farm of gilthead seabream (Sparus aurata) in the NW Mediterranean Sea on water column and sediment. Aquacult. Res., 46: 59-74.

10.1111/are.1215932313429PMC7159775
48

Olsen, L.M., M. Holmer and Y. Olsen, 2008. Perspectives of nutrient emission from fish aquaculture in coastal waters. Literature review with evaluated state of knowledge. FHF Project No. 542014, FHF-Fishery and Aquaculture Industry Research Fund, 66 pp.

49

Park, S., S. Kim, Y.J. Kim, S.-J. Hong, R.H. Jung and S.-P. Yoon, 2022. Procedure of the ecological index and rating calculation methods for fishery environmental assessment. J. Kor. Soc. Mar. Environ. Saf., 28(5): 835-842.

10.7837/kosomes.2022.28.5.835
50

Parsons, T.R., Y. Maita and C.M. Lalli, 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, 173 pp.

51

Porrello, S., P. Tomassetti, L. Manzueto, M.G. Finoia, E. Persia, I. Mercatali and P. Stipa, 2005. The influence of marine cages on the sediment chemistry in the Western Mediterranean Sea. Aquaculture, 249: 145-158.

10.1016/j.aquaculture.2005.02.042
52

Price, C., K.D. Black, B.T. Hargrave and J.A. Morris Jr., 2015. Marine cage culture and the environment: effects on water quality and primary production. Aquacult. Environ. Interact., 6: 151-174.

10.3354/aei00122
53

Rozan, T.F., M. Taillefert, R.E. Trouwborst, B.T. Glazer, S. Ma, J. Herszage, L.M. Valdes, K.S. Price and G.W. Luther III, 2002. Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms. Limnol. Oceanogr., 47: 1346-1354.

10.4319/lo.2002.47.5.1346
54

Ruttenberg, K.C., N.O. Ogawa, F. Tamburini, R.A. Briggs, N.D. Colasacco and E. Joyce, 2009. Improved, high-throughput approach for phosphorus speciation in natural sediments via the SEDEX sequential extraction method. Limnol. Oceanogr. Methods, 7: 319-333.

10.4319/lom.2009.7.319
55

Schenau, S.J., C.P. Slomp and G.J. De Lange, 2000. Phosphogenesis and active phosphorite formation in sediments from the Arabian Sea oxygen minimum zone. Mar. Geol., 169: 1-20.

10.1016/S0025-3227(00)00083-9
56

Schenau, S.J. and G.J. De Lange, 2000. A novel chemical method to quantify fish debris in marine sediments. Limnol. Oceanogr., 45: 963-971.

10.4319/lo.2000.45.4.0963
57

Schenau, S.J. and G.J. De Lange, 2001. Phosphorus regeneration vs. burial in sediments of the Arabian Sea. Mar. Chem., 75: 201-217.

10.1016/S0304-4203(01)00037-8
58

Schulz, H.N. and H.D. Schulz, 2005. Large sulfur bacteria and the formation of phosphorite. Science, 307: 416-418.

10.1126/science.110309615662012
59

Slomp, C.P., 2011. Phosphorus cycling in the estuarine and coastal zones: sources, sinks, and transformations. In: Treatise on Estuarine and Coastal Science, vol 5, edited by Wolanski, E. and D.S. McLusky, Waltham: Academic Press, pp. 201-229.

10.1016/B978-0-12-374711-2.00506-4
60

Slomp, C.P., E.H.G. Epping, W. Helder and W. van Raaphorst, 1996. A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments. J. Mar. Res., 54: 1179-1205.

10.1357/0022240963213745
61

Slomp, C.P., H.P. Mort, T. Jilbert, D.C. Reed, B.G. Gustafsson and M. Wolthers, 2013. Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane. PLoS ONE, 8: e62386.

10.1371/journal.pone.006238623626815PMC3633846
62

Soto, B.D. and F. Norambuena, 2004. Evaluation of salmon farming effects on marine systems in the inner seas of southern Chile: a large-scale mensurative experiment. J. Appl. Ichthyol., 20: 493-501.

10.1111/j.1439-0426.2004.00602.x
63

Stigebrandt, A. and A. Andersson, 2020. The eutrophication of the Baltic Sea has been boosted and perpetuated by a major internal phosphorus source. Front. Mar. Sci., 7: 572994.

10.3389/fmars.2020.572994
64

Tada, K., M. Nakakuni, J. Koomklang, H. Yamaguchi and K. Ichimi, 2023. The impact of fish farming on phosphorus loading of surface sediment in coastal complex aquaculture. Fish. Sci., 89: 375-386.

10.1007/s12562-022-01666-2
65

Tsandev, I., D.C. Reed and C.P. Slomp, 2012. Phosphorus diagenesis in deep-sea sediments: Sensitivity to water column conditions and global scale implications. Chem. Geol., 330-331: 127-139.

10.1016/j.chemgeo.2012.08.012
66

Tyrrell, T., 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400: 525-531.

10.1038/22941
67

van der Zee, C., C.P. Slomp and W. van Raaphorst, 2002. Authigenic P formation and reactive P burial in sediments of the Nazaré canyon on the Iberian margin (NE Atlantic). Mar. Geol., 185: 379-392.

10.1016/S0025-3227(02)00189-5
68

Viktorsson, L., N. Ekeroth, M. Nilsson, M. Kononets and P.O.J. Hall, 2013. Phosphorus recycling in sediments of the central Baltic Sea. Biogeosciences, 10: 3901-3916.

10.5194/bg-10-3901-2013
69

Wang, X., L.M. Olsen, K.I. Reitan and Y. Olsen, 2012. Discharge of nutrient wastes from salmon farms: environmental effects, and potential for integrated multi-trophic aquaculture. Aquacult. Environ. Interact., 2: 267-283.

10.3354/aei00044
70

White, P.G., 2013. Environmental consequences of poor feed quality and feed management. In On-farm feeding and feed management in aquaculture, edited by Hasan, M.R. and M.B. New, FAO Fisheries and Aquaculture Technical Paper No. 583. Rome, FAO. pp. 553-564.

71

Wu, R.S.S., 2001. Environmental impacts of marine fish farming and their mitigation. In: Responsible Aquaculture Development in Southeast Asia. Proceedings of the Seminar-Workshop on Aquaculture Development in Southeast Asia organized by the SEAFDEC Aquaculture Department, 12-14 October 1999, Iloilo City, Philippines, edited by Garcia, L.M.B., Tigbauan, Iloilo, Philippines: SEAFDEC Aquaculture Department. pp. 157-172.

72

Zhen-Zhen, C., Z. Jian, Y. Miao-Feng, L. Yong-Qing, Z. Hui-Dong, L. Dong-Lian, J. Shuang-Cheng, G. Tuan-Yu and Z. Sheng-Hua, 2023. Vertical distribution and pollution assessment of TN, TP, and TOC in the sediment cores of cage farming areas in Dongshan Bay of southeast China. Front. Environ. Sci., 11: 1216868.

10.3389/fenvs.2023.1216868
Information
  • Publisher :The Korean Society of Oceanography
  • Publisher(Ko) :한국해양학회
  • Journal Title :The Sea Journal of the Korean Society of Oceanography
  • Journal Title(Ko) :한국해양학회지 바다
  • Volume : 30
  • No :2
  • Pages :121-133
  • Received Date : 2025-05-07
  • Accepted Date : 2025-05-16
Journal Informaiton The Sea Journal of the Korean Society of Oceanography The Sea Journal of the Korean Society of Oceanography
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close