All Issue

2025 Vol.30, Issue 2

Article

31 May 2025. pp. 81-92
Abstract
References
1

바다누리 해양정보 서비스, 2024a. 우이도 해양 관측 부이 관측 자료, Available at: https://www.khoa.go.kr/ (Accessed 14 May 2025).

2

바다누리 해양정보 서비스, 2024b. 향화도 조위관측소 관측 자료, Available at: https://www.khoa.go.kr/ (Accessed 14 May 2025).

3

Baek, Y., S. Lee, S. Lee, H.-J. Kim, H.-T. Jou and S. Ryu, 2016. Textural facies and distribution of surface sediments and morphology on Korean tidal flats. J. Coast. Res., 75: 1307-1311.

10.2112/SI75-262.1
4

Baykal, C., B.M. Sumer, D.R. Fuhrman, N.G. Jacobsen and J. Fredsøe, 2017. Numerical simulation of scour and backfilling processes around a circular pile in waves. Coast. Eng., 122: 87-107.

10.1016/j.coastaleng.2017.01.004
5

Chen, H.H., R.-Y. Yang and H.-H. Hwung, 2014. Study of hard and soft countermeasures for scour protection of the jacket-type offshore wind turbine foundation. J. Mar. Sci. Eng., 2(3): 551-567.

10.3390/jmse2030551
6

Chen, H., J. Zhang, F. Wang, Y. Guo, D. Guan and L. Feng, 2023. Experimental investigation of the current induced local scour around a jacket foundation. Ocean Eng., 285: 115369.

10.1016/j.oceaneng.2023.115369
7

Cho, H., J. Lee, J. Kim and Y. Cho, 2023. Content and distribution of heavy metals in surface sediments from off Shinan island, southwest coast of Korea. J. Korea Soc. Mar. Environ. Energy, 26(4): 387-395.

10.7846/JKOSMEE.2023.26.4.387
8

Choi, K., 2014. Morphology, sedimentology and stratigraphy of Korean tidal flats-Implications for future coastal managements. Ocean Coast. Manag., 102: 437-448.

10.1016/j.ocecoaman.2014.07.009
9

Choo, H.-S. and D.-S. Kim, 2013. Tide and tidal currents around the archipelago on the southwestern waters of the South Sea, Korea. J. Korean Soc. Mar. Environ. Safety, 19(6): 582-596.

10.7837/kosomes.2013.19.6.582
10

Couldrey, A.J., T. Benson, M.A. Knaapen, K.V. Marten and R.J.S. Whitehouse, 2020. Morphological evolution of a barchan dune migrating past an offshore wind farm foundation. Earth Surf. Process. Landforms, 45(12): 2884-2896.

10.1002/esp.4937
11

Dixen, F.H., M. Dixen, J. Pedersen and J.F. Dahl, 2012. Scour development around offshore wind turbine foundation: field measurement and analysis. In Proceedings of 6th International Conference on Scour and Erosion, Paris, pp. 1441-1447.

12

Du, S., Z. Wang, R. Wang, B. Liang and X. Pan, 2022. Effects of flow intensity on local scour around a submerged square pile in a steady current. Phys. Fluids, 34(8): 085126.

10.1063/5.0103556
13

Euler, T., J. Herget, O. Schlömer and G. Benito, 2017. Hydromorphological processes at submerged solitary boulder obstacles in streams. Catena, 157: 250-267.

10.1016/j.catena.2017.05.028
14

Figueroa, S.M., G. Lee and H.-J. Shin, 2020. Effects of an estuarine dam on sediment flux mechanisms in a shallow, macrotidal estuary. Estuar. Coast. Shelf Sci., 238: 106718.

10.1016/j.ecss.2020.106718
15

Geng, F., W. Yang, S. Nadimi and Z. Hu, 2024. Development and prediction of scour around offshore wind turbine monopile foundations in ebb and flow tides. Ocean Eng., 311: 118905.

10.1016/j.oceaneng.2024.118905
16

Guo, L., Z.B. Wang, I. Townend and Q. He, 2019. Quantification of tidal asymmetry and its nonstationary variations. J. Geophys. Res. Oceans, 124(1): 773-787.

10.1029/2018JC014372
17

Harris, J.M., W.M. Herman and B.S. Cooper, 2004. Offshore windfarms-an approach to scour assessment. In Proceedings 2nd International Conference on Scour and Erosion, Singapore, pp. 14-17.

18

Hartvig, P.A., J.M. Thomsen, P. Frigaard and T.L. Andersen, 2010. Experimental study of the development of scour and backfilling. J. Coast. Eng., 52(2): 157-194.

10.1142/S0578563410002154
19

Jeon, B.J., S.W. Jeong, I. Jeon and H.K. Ha, 2024. Influence of tidal asymmetry on local scour near the offshore platform. Reg. Stud. Mar. Sci., 80: 103891.

10.1016/j.rsma.2024.103891
20

Jeong, M.-S., C.-J. Moon, Y.-H. Chang, S.-H. Lee and S.-H. Lee, 2018. A study on design of generation capacity for offshore wind power plant: The case of Chonnam province in Korea. J. Korea Inst. Electron. Commun. Sci., 13(3): 547-554.

21

Jeong, S.W., B.J. Jeon and H.K. Ha, 2023. Review on techniques for monitoring and prediction of local scour around marine artificial structures. Korean J. Hydrography, 12(1): 3-13.

22

Keshtpoor, M., J.A. Puleo, F. Shi and G. Ma, 2015. 3D numerical simulation of turbulence and sediment transport within a tidal inlet. Coast. Eng., 96: 13-26.

10.1016/j.coastaleng.2014.10.009
23

Kim, C.-M. and K.-Y. Kim, 2008. A study on economic analysis of new renewable energy power (photovoltaic, wind power, small hydro, biogas). J. Korea Sol. Energy Soc., 28(6): 70-77.

24

Kim, J.-H., G.-H. Ryu, H.-C. Son, Y.-G. Kim and C.-J. Moon, 2022. A study on the optimal site selection by constraint mapping and park optimization for offshore wind farm in the southwest coastal area. J. Korean Inst. Electron. Commun. Sci., 17(6): 1145-1156.

25

Kyong, N.H., J.E. Yoon, M.S. Jang and D.S. Jang, 2003. An assessment of offshore wind energy resources around Korean Peninsula. J. Korea Sol. Energy Soc., 23(2): 35-41.

26

Lee, J., D. Lee, J. Lee, M. Yoon and G. Jang, 2023. Offshore MTDC transmission expansion for renewable energy scale‐up in Korean power system: DC highway. J. Electr. Eng. Technol., 18(4): 2483-2493.

10.1007/s42835-023-01513-z37362030PMC10153034
27

Lee, J.-H., H.-S. Jung, H. Ryu, Y. Jang, J.-H. Ryu, H.J. Woo and K. Kim, 2024. Spatial characteristics of mean particle sizes, organic carbon, and pore-water salinity in the surface sediments of the Ujeon tidal flats, Jeungdo, Sinangun, west coast of Korea. J. Coast. Res., 113(SI): 824-828.

10.2112/JCR-SI113-162.1
28

McGovern, D.J., S. Ilic, A.M. Folkard, S.J. McLelland and B.J. Murphy, 2014. Time development of scour around a cylinder in simulated tidal currents. J. Hydraul. Eng., 140(6): 04014014.

10.1061/(ASCE)HY.1943-7900.0000857
29

Nidzieko, N.J., 2010. Tidal asymmetry in estuaries with mixed semidiurnal/diurnal tides. J. Geophys. Res. Oceans, 115: C08006.

10.1029/2009JC005864
30

Oh, M., O. Kwon, W.-M. Jeong and K.-S. Lee, 2012. FLOW-3D analysis on scouring around offshore wind foundation. J. Korea Acad.-Ind. Coop. Soc., 13(3): 1346-1351.

10.5762/KAIS.2012.13.3.1346
31

Park, Y.-J. and T.-W. Kim, 2017. Analysis of scour phenomenon around offshore wind foundation using Flow-3D model. J. Korea Acad.-Ind. Coop. Soc., 18(11): 690-696.

32

Park, M.C., J.H. Park, G.Y. Lee, C.M. Lee, G.H. Yu, H.W. Jang and H.S. Park, 2024. Consideration on pre-feasibility studies for large-scale offshore wind farms led by local governments, focusing on the case of Shinan-gun. New Renew. Energy, 20(2): 65-70.

10.7849/ksnre.2024.0017
33

Qi, W.G. and F.P. Gao, 2014. Equilibrium scour depth at offshore monopile foundation in combined waves and current. Sci. China Technol. Sci., 57: 1030-1039.

10.1007/s11431-014-5538-9
34

Qi, W.G. and F.P. Gao, 2019. Local scour around a monopile foundation for offshore wind turbines and scour effects on structural responses. In Geotechnical Engineering-Advances in Soil Mechanics and Foundation Engineering, IntechOpen.

10.5772/intechopen.88591
35

Qu, K., K. Chen, J. Zheng, P. Lu and N. Wang, 2023. Scour characteristics and dynamic mechanisms of the breakwater head in the abandoned Yellow River Delta on the northern Jiangsu coast, China. Estuar. Coast. Shelf Sci., 292: 108484.

10.1016/j.ecss.2023.108484
36

Roh, J.Y., 2021. A study on the activation of an offshore wind energy market for achieving carbon neutrality in Korea. Ph.D. Thesis, Sejong University, Seoul, 219 pp.

37

Roulund, A., B.M. Sumer, J. Fredsøe and J. Michelsen, 2005. Numerical and experimental investigation of flow and scour around a circular pile. J. Fluid Mech., 534: 351-401.

10.1017/S0022112005004507
38

Ryu, S.O., J.H. Chang, J.W. Cho and B.C. Moon, 2004. Seasonal variations of sedimentary processes on mesotidal beach in Imjado, southwestern coast of Korea. J. Korea. Soc. Oceanogr., 9(3): 83-92.

39

Ryu, G.H., H. Kim, Y.-G. Kim, K.-H. Chon, J.Y. Joo and C.-J. Moon, 2021. GIS-based site analysis of an optimal offshore wind farm for minimizing coastal disasters. J. Coast. Res., 114(SI): 246-250.

10.2112/JCR-SI114-050.1
40

Sanford, L.P., S.E. Suttles and J.P. Halka, 2001. Reconsidering the physics of the Chesapeake Bay estuarine turbidity maximum. Estuaries, 24(5): 655-669.

10.2307/1352874
41

Schendel, A., A. Hildebrandt, N. Goseberg and T. Schlurmann, 2018. Processes and evolution of scour around a monopile induced by tidal currents. Coast. Eng., 139: 65-84.

10.1016/j.coastaleng.2018.05.004
42

Schlömer, O. and J. Herget, 2023. Geometry of local scour holes at boulder-like obstacles during unsteady flow conditions and varying submergence. Water, 15(5): 958.

10.3390/w15050958
43

Seo, J., J. Maeng, E. Lim, S. Jin, H. Kim and T. Kim, 2019. Marine environmental characteristics around the test phase of offshore wind farm in the southwestern coast of Yellow Sea. J. Environ. Impact Assess, 28(5): 457-470.

44

Seo, J.Y., B.-J. Choi, J. Ryu and H.K. Ha, 2022. Dynamic evolution of a secondary turbidity maximum under various forcing conditions in a microtidal estuary. Mar. Geol., 446: 106760.

10.1016/j.margeo.2022.106760
45

Sumer, B.M. and J. Fredsøe, 2001. Scour around pile in combined waves and current. J. Hydraul. Eng., 127(5): 403-411.

10.1061/(ASCE)0733-9429(2001)127:5(403)
46

Sumer, B.M., C. Truelsen, T. Sichmann and J. Fredsøe, 2001. Onset of scour below pipelines and self-burial. Coast. Eng., 42(4): 313-335.

10.1016/S0378-3839(00)00066-1
47

Sumer, B.M., T.U. Petersen, L. Locatelli, J. Fredsøe, R.E. Musumeci and E. Foti, 2013. Backfilling of a scour hole around a pile in waves and current. J. Waterw. Port Coast. Ocean Eng., 139(1): 9-23.

10.1061/(ASCE)WW.1943-5460.0000161
48

Whitehouse, R.J.S., J. Harris, J. Sutherland and J. Rees, 2008. An assessment of field data for scour at offshore wind turbine foundations. In Proceedings 2nd International Conference on Scour and Erosion, Tokyo.

49

Whitehouse, R.J.S., J.M. Harris, J. Sutherland and J. Rees, 2011. The nature of scour development and scour protection at offshore windfarm foundations. Mar. Pollut. Bull., 62(1): 73-88.

10.1016/j.marpolbul.2010.09.00721040932
50

Woo, K.S., S.S. Chun and K.O. Moon, 2020. Outstanding geoheritage values of the island-type tidal flats in Korea. Geoheritage, 12(1): 8.

10.1007/s12371-020-00445-8
51

Yang, R.Y., H.H. Chen, H.H. Hwung, W.P. Jiang and N.T. Wu, 2011. Experimental study on the loading and scour of the jacket type offshore wind turbine foundation. Eng. Proc., 32: 25-25.

10.9753/icce.v32.structures.25
52

Yang, Y., M. Qi, X. Wang and J. Li, 2020. Experimental study of scour around pile groups in steady flows. Ocean Eng., 195: 106651.

10.1016/j.oceaneng.2019.106651
53

Zhang, Z., S. Du, Y. Guo, Y. Yang, J. Zeng, T. Sui, R. Wei and Z. Li, 2023. Field study of local scour around bridge foundations on silty seabed under irregular tidal flow. Coast. Eng., 185: 104382.

10.1016/j.coastaleng.2023.104382
Information
  • Publisher :The Korean Society of Oceanography
  • Publisher(Ko) :한국해양학회
  • Journal Title :The Sea Journal of the Korean Society of Oceanography
  • Journal Title(Ko) :한국해양학회지 바다
  • Volume : 30
  • No :2
  • Pages :81-92
  • Received Date : 2025-04-17
  • Revised Date : 2025-05-20
  • Accepted Date : 2025-05-20
Journal Informaiton The Sea Journal of the Korean Society of Oceanography The Sea Journal of the Korean Society of Oceanography
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close