Review
Both, R., K. Crook, B. Taylor, S. Brogan, B.W. Chappell, E. Frankel, L. Liu, J. Sinton and D. Tiffin, 1986. Hydrothermal chimneys and associated fauna in the Manus back-arc basin, Papua New Guinea. Eos, Trans. Amer. Geophys. Union., 67(21): 489-494.
10.1029/EO067i021p00489Breusing, C., R.C. Vrijenhoek and T.B.H. Reusch, 2017. Widespread introgression in deep-sea hydrothermal vent mussels. BMC. Evol. Biol., 17: 13.
10.1186/s12862-016-0862-228086786PMC5237248Chakraborty, P., S.G. Sander, S. Jayachandran, B.N. Nath, G. Nagaraju, K. Chennuri, K. Vudamala, N. Lathika and M.B.L. Mascarenhas-Pereira, 2014. Fate of copper complexes in hydrothermally altered deep-sea sediments from the Central Indian Ocean Basin. Environ. Pollut., 194: 138-144.
10.1016/j.envpol.2014.07.01225108489Chase, R.L., J.R. Delaney, J.L. Karsten, H.P. Johnson, S.K. Juniper, J.E. Lupton, S.E. Scott, V. Tunnicliffe, S.R. Hammond and R.E. McDuff, 1985. Hydrothermal vents on an axis seamount of the Juan de Fuca ridge. Nature, 313: 212-214.
10.1038/313212a0Cho, B., D. Kim and T. Kim, 2022. Exceptional properties of hyper-resistant armor of a hydrothermal vent crab. Sci. Rep., 12: 11816.
10.1038/s41598-022-15982-135821397PMC9276715Choi, S., J.-W. Park, J. Kim, J. Oh, C. Park and S. Han, 2024. Melt-Rock Reaction in the Lower Oceanic Crust and the Influence on the Evolution of Mid-Ocean Ridge Basalts at the Central Indian Ridge (7°50′-8°30′S). Journal of Petrology, 65(6): egae057.
10.1093/petrology/egae057Copley, J.T., L. Marsh, A.G. Glover, V. Huhnerbach, V.E. Nye, W.D.K. Reid, C.J. Sweeting, B.D. Wigham and H. Wiklund, 2016. Ecology and biogeography of megafauna and macrofauna at the first known deep-sea hydrothermal vents on the ultraslow-spreading Southwest Indian Ridge. Scientific Reports, 6: 39158.
10.1038/srep3915827966649PMC5155287Corliss, J.B. and R.D Ballard, 1977. Oasis of life in the cold abyss. J. Natl. Geogr. Soc., 152: 441-453.
Craig, H., Y. Horibe, K.A. Farley, J.A. Welhan, K.R. Kim and R.N. Hey, 1987. Hydrothermal vents in the Mariana Trough: results of the first ALVIN dives. EOS Trans. Am. Geophys. Union, 68: 1531.
German, C.R., S. Colley, M.R. Palmer, A. Khripounoff and G.P. Klinkhammer, 2002. Hydrothermal plume-particle fluxes at 13°N on the East Pacific Rise. Deep Sea Res.Ⅰ, 49(11): 1921-1940.
10.1016/S0967-0637(02)00086-9Halbach, P., K.-I. Nakamura, M. Wahsner, J. Lange, H. Sakai, L. Kaselitz, R.-D. Hansen, M. Yamano, J. Post, B. Prause, R. Seifert, W. Michaelis, F. Teichmann, M. Kinoshita, A. Marten, J. Ishibashi, S. Czerwinski and N. Blum, 1989. Probable modern analogue of Kuroko-type massive sulphide deposits in the Okinawa Trough back-arc basin. Nature, 338: 496-499.
10.1038/338496a0Han, Y., G. Gonnella, N. Adam, A. Schippers, L. Burkhardt, S. Kurtz, U. Schwarz-Schampera, H. Franke and M. Perner, 2018. Hydrothermal chimneys host habitat-specific microbial communities: Analogues for studying the possible impact of mining seafloor massive sulfide deposits. Sci. Rep., 8: 10386.
10.1038/s41598-018-28613-529991752PMC6039533Hashimoto, J., S. Ohta, T. Gamo, H. Chiba, T. Yamaguchi, S. Tsuchida, T. Okudaira, H. Watabe, T. Yamanaka and M. Kitazawa, 2001. First hydrothermal vent communities from the Indian Ocean discovered. Zool. Sci., 18: 717-721.
10.2108/zsj.18.717Heo, S.-Y., N. Kang, E.-A. Kim, J. Kim, S.-H. Lee, G. Ahn, J.H. Oh, A.Y. Shin, D. Kim and S.-J. Heo, 2023. Purification and Molecular Docking Study on the Angiotensin I-Converting Enzyme (ACE)-Inhibitory Peptide Isolated from Hydrolysates of the Deep-Sea Mussel Gigantidas vrijenhoeki. Mar. Drugs, 21: 458.
10.3390/md2108045837623739PMC10456528Herrera, S., H. Watanabe and T.M. Shank, 2015. Evolutionary and biogeographical patterns of barnacles from deep-sea hydrothermal vents. Molecular ecology, 24(3): 673-689.
10.1111/mec.1305425602032PMC5006861Hessler, R.R. and P.F. Lonsdale, 1991. Biogeography of Mariana Trough hydrothermal vent communities. Deep-Sea Res., 38: 185-199.
10.1016/0198-0149(91)90079-UHusson, B., P.-M. Sarradin, D. Zeppilli and J. Sarrazin, 2017. Picturing thermal niches and biomass of hydrothermal vent species. Deep-Sea Res. II, 137: 6-25.
10.1016/j.dsr2.2016.05.028Ivanenko, V.N., J. Lee, C.Y. Chang and I.-H. Kim, 2019. Description of Barathricola thermophilus, a new species from a deep-sea hydrothermal vent field in the Indian Ocean with redescription of the Barathricola type species (Crustacea, Copepoda, Cyclopoida). ZooKeys, 865: 103-121.
10.3897/zookeys.865.3582731379446PMC6663938Jang, S.-J., S.-Y. Cho, C. Li, Y. Zhou, H. Wang, J. Sun, A.K. Patra and Y.-J. Won, 2023. Geographical subdivision of Alviniconcha snail populations in the Indian Ocean hydrothermal vent regions. Front. Mar. Sci., 10: 1139190.
10.3389/fmars.2023.1139190Jang, S.-J., Y. Chung, S. Jun and Y.-J. Won, 2022. Connectivity and divergence of symbiotic bacteria of deep-sea hydrothermal vent mussels in relation to the structure and dynamics of mid-ocean ridges. Front. Mar. Sci., 9: 845965.
10.3389/fmars.2022.845965Jollivet, D., J. Hashimoto, J.M. Auzende, E. Honza, E. Ruellan, S. Dutt, Y. Iwabuchi, P. Jarvis, M. Joshima, T. Kawai, T. Kawamoto, K. Kisimoto, Y. Lafoy, T. Matsumoto, K. Mitsuzawa, T. Naganuma, J. Naka, K. Otsuka, A. Otsuki, B. Rao, M. Tanahashi, T. Tanaka, J. Temakon, T. Urabe, T. Veivau and T. Yokokura, 1989. First observations of faunal assemblages associated with hydrothermalism in the North-Fiji back-arc basin. C. R. Acad. Sci. Paris, 309: 301-308.
Kang. T. and D. Kim, 2021. Meiofauna and nematode community composition in a hydrothermal vent and deep-sea sediments in the Central Indian Ridge. Mar. Pollut. Bull., 170: 112616.
10.1016/j.marpolbul.2021.11261634147859Kelley, D.S., J.A. Karson, D.K. Blackman, G.L. Fruh-Green, D.A. Butterfield, M.D. Lilley, E.J. Olson, M.O. Schrenk, K.K. Roe, G.T. Lebon, P. Rivizzigno and AT3-60 Shipboard Party, 2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature, 412: 145-149.
10.1038/3508400011449263Kim, J., S.K. Son, D. Kim, S.J. Pak, O.H. Yu, S.L. Walker, J. Oh, S.K. Choi, K. Ra, Y. Ko, K.-H. Kim, J.-H. Lee and J. Son, 2020a. Discovery of active hydrothermal vent fields along the Central Indian Ridge, 8-12°S. Geochem. Geophys. Geosyst., 21(8): e2020GC009058.
10.1029/2020GC009058Kim, J.G. and J. Lee, 2020. A new species of the genus Smacigastes Ivanenko & Defaye, 2004 (Tegastidae, Harpacticoida, Copepoda) from the Onnuri Vent Field in the Indian Ocean. Zoosystematics and Evolution, 96(2): 699-714.
10.3897/zse.96.54507Kim, M., H. Choi, H. Kim, J. Kang, H.G. Jeong, S.-I. Eyun and J.-H. Kang, 2023. Characterization of the Mitochondrial Genome, Ecological Distribution, and Morphological Features of the Marine Gastropod Mollusc Lophocochlias parvissimus (Gastropoda, Tornidae). Journal of Marine Science and Engineering, 11(12): 2307.
10.3390/jmse11122307Kim, M., J.-H. Kang and D. Kim, 2022a. Holoplanktonic and Meroplanktonic Larvae in the Surface Waters of the Onnuri Vent Field in the Central Indian Ridge. Journal of Marine Science and Engineering, 10(2): 158.
10.3390/jmse10020158Kim, S.L., H. Choi, S. Eyun, D. Kim and O.H. Yu, 2022b. A new Branchipolynoe (Aphroditiformia: Polynoidae) scale worm from the Onnuri deepsea hydrothermal vent field, northern Central Indian Ridge. Zool. Stud., 61: 21.
10.21203/rs.3.rs-674600/v1Kim, Y.J., J.A. Yang, J.K. Lim, M.J. Park, S.H. Yang, H.S. Lee, S.G. Kang, J.H. Lee and K.K. Kwon, 2020b. Paradesulfovibrio onnuriensis gen. nov., sp. nov., a chemolithoautotrophic sulfate-reducing bacterium isolated from the Onnuri vent field of the Indian Ocean and reclassification of Desulfovibrio senegalensis as Paradesulfovibrio senegalensis comb. nov. J. Microbiol., 58(4): 252-259.
10.1007/s12275-020-9376-032103446Kimura, M., S. Uyeda, Y. Kato, T. Tanaka, M. Yamano, T. Gamo, H. Sakai, S. Kato, E. Izawa and T. Oomori, 1988. Active hydrothermal mounds in the Okinawa Trough backarc basin, Japan. Tectonophysics, 145(3-4): 319-324.
10.1016/0040-1951(88)90203-XLee, J., D. Kim and I.-H. Kim, 2020. Copepoda (Siphonostomatoida: Dirivultidae) from Hydrothermal Vent Fields on the Central Indian Ridge, Indian Ocean. Zootaxa, 4759(3): 301-337.
10.11646/zootaxa.4759.3.133056904Lim, D., H. Kim, J. Kim, D. Jeong and D. Kim, 2020a. Mercury proxy for hydrothermal and submarine volcanic activities in the sediment cores of Central Indian Ridge. Mar. Pollu. Bull., 159: 111513.
10.1016/j.marpolbul.2020.11151332777546Lim, D., J. Kim, W. Kim, J. Kim, D. Kim, L. Zhang, K. Kwack and Z. Xu, 2022. Characterization of Geochemistry in Hydrothermal Sediments From the Newly Discovered Onnuri Vent Field in the Middle Region of the Central Indian Ridge. Front. Mar. Sci., 9: 810949.
10.3389/fmars.2022.810949Lim, J.K., Y.J. Kim, J.A. Yang, T. Namirimu, S.H. Yang, M.J. Park, Y.M. Kwon, H.S. Lee, S.G. Kang, J.H. Lee and K.K. Kwon, 2020b. Thermococcus indicus sp. nov., a Fe(III)-reducing hyperthermophilic archaeon isolated from the Onnuri Vent Field of the Central Indian Ocean ridge. J. Microbiol., 58(4): 260-267.
10.1007/s12275-020-9424-932239454Mills, R.A. and H. Elderfield, 1995. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26°N Mid-Atlantic Ridge. Geochim. Cosmochim. Acta, 59(17): 3511-3524.
10.1016/0016-7037(95)00224-NNamirimu, T., Y.J. Kim, M.-J. Park, D. Lim, J.-H. Lee and K.K. Kwon, 2022. Microbial Community Structure and Functional Potential of Deep-Sea Sediments on Low Activity Hydrothermal Area in the Central Indian Ridge. Front. Mar. Sci., 9: 784807.
10.3389/fmars.2022.784807Nyholm, S.V., J. Robidart and P.R. Girguis, 2008. Coupling Metabolite Flux to Transcriptomics: Insights Into the Molecular Mechanisms Underlying Primary Productivity by the Hydrothermal Vent Tubeworm Ridgeia piscesae. Biol. Bull., 214: 255-265.
10.2307/2547066718574102O'Maille, P., 2015. Microbiology: Fungus against the wall. Nature, 521: 168-169.
10.1038/521168a25971507Ohta, S. and D. Kim, 2001. Submersible Observations of the Hydrothermal Vent Communities on the Iheya Ridge, Mid Okinawa Trough, Japan. J. Oceanogr., 57: 663-677.
Park, Y.-J., J.K. Lim, Y.J. Kim, S.-H. Yang, H.S. Lee, S.G. Kang, J.-H. Lee, Y. Yang and K.K. Kwon, 2023. Thermococcus argininiproducens sp. nov., an arginine biosynthesis archaeal species isolated from the Central Indian Ocean ridge. Int. J. Syst. Evol. Microbiol., 73(4): 005760.
10.1099/ijsem.0.00576037022754Rona, P.A., G. Klinkhammer, T.A. Nelson, J.H. Trefry and H. Elderfield, 1986. Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge. Nature, 321: 33-37.
10.1038/321033a0Ryu, T., J.G. Kim, J. Lee, O.H. Yu, S. Yum, D. Kim and S. Woo, 2021. First transcriptome assembly of a newly discovered vent mussel, Gigantidas vrijenhoeki, at Onnuri Vent Field on the northern Central Indian Ridge. Mar. Genom., 57: 100819.
10.1016/j.margen.2020.10081932933864Ryu, T., S. Woo and N. Lee, 2019. The first reference transcriptome assembly of the stalked barnacle, Neolepas marisindica, from the Onnuri Vent Field on the central indian ridge. Mar. Genom., 48: 100679.
10.1016/j.margen.2019.04.004Sands, C.M., D.P. Connelly, P.J. Statham and C.R. German, 2012. Size fractionation of trace metals in the Edmond hydrothermal plume, Central Indian Ocean. Earth Planet. Sci. Lett., 319: 15-22.
10.1016/j.epsl.2011.12.031Sim, M.S., H. Ogata, W. Lubitz, J.F. Adkins, A.L. Sessions, V.J. Orphan and S.E. McGlynn, 2019. Role of APS reductase in biogeochemical sulfur isotope fractionation. Nat. Commun., 10: 44.
10.1038/s41467-018-07878-430626879PMC6327049Spiess, F.N., K.C. Macdonald, T. Atwater, R. Ballard, A. Carranza, D. Cordoba, C. Cox, V. M. Diaz Garcia, J. Francheteau, J. Guerrero, J. Hawkins, R. Haymon, R. Hessler, T. Juteau, M. Kastner, R. Larson, B. Luyendyk, J. D. Macdougall, S. Miller, W. Normark, J. Orcutt and C. Rangin, 1980. East Pacific Rise: Hot Springs and Geophysical Experiments. Science, 207(4438): 1421-1433.
10.1126/science.207.4438.142117779602Suh, Y.J., M.-S. Kim, S.-J. Kim, D. Kim and S.-J. Ju, 2022. Carbon sources and trophic interactions of vent fauna in the Onnuri Vent Field, Indian Ocean, inferred from stable isotopes. Deep Sea Res.I, 192: 103915.
10.1016/j.dsr.2021.103683Suh, Y.J., S.-J. Ju, M.-S. Kim, H. Choi and K.-H. Shin, 2023. Trophic diversity of chemosymbiont hosts in deep-sea hydrothermal vents using amino acid nitrogen isotopes. Front. Mar. Sci., 10: 1204992.
10.3389/fmars.2023.1204992Tarasov, V., A. Gebruk, A. Mironov and L. Moskalev, 2005. Deep-sea and shallow-water hydrothermal vent communities: Two different phenomena? Chem. Geol., 224: 5-39.
10.1016/j.chemgeo.2005.07.021Van Dover, C.L., S.E. Humphris, D. Fornari, C.M. Cavanaugh, R. Collier, S.K. Goffredi, J. Hashimoto, M.D. Littey, A.L. Reysenbach, T.M. Shank, K.L. Von Damm, A. Banta, R.M. Gallant, D. Gotz, D. Green, J. Hall, T.L. Harmer, L.A. Hurtado, P. Johnson, Z.P. McKiness, C. Meredith, E. Olson, I.L. Pan, M. Turnipseed, Y. Won, C.R. Young and R.C. Vrijenhoek, 2001. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science, 294: 818-823.
10.1126/science.106457411557843Von Stackelberg, U. and the Shipboard Scientific Party, 1988. Active hydrothermalism in the Lau Back-Arc Basin (SW-Pacific): First results from the Sonne 48 cruise. Mar. Min., 7: 431-442.
Zhou, Y., C. Chen, D. Zhang, Y. Wang, H.K. Watanabe, J. Sun, D. Bissessur, R. Zhang, Y. Han, D. Sun, P. Xu, B. Lu, H. Zhai, X. Han, C. Tao, Z. Qiu, Y. Sun, Z. Liu, J.-W. Qiu and C. Wang, 2022. Delineating biogeographic regions in Indian ocean deep-sea vents and implications for conservation. Diversity and Distributions., 28: 2858-2870.
10.1111/ddi.13535- Publisher :The Korean Society of Oceanography
- Publisher(Ko) :한국해양학회
- Journal Title :The Sea Journal of the Korean Society of Oceanography
- Journal Title(Ko) :한국해양학회지 바다
- Volume : 29
- No :4
- Pages :189-217
- Received Date : 2024-10-30
- Revised Date : 2024-11-19
- Accepted Date : 2024-11-19
- DOI :https://doi.org/10.7850/jkso.2024.29.4.189