Review
Abram, N.J., N.M. Wright, B. Ellis, B.C. Dixon, J.B. Wurtzel, M.H. England, C.C. Ummenhofer, B. Philibosian, S.Y. Cahyarini, T.-L. Yu, C.-C. Shen, H. Cheng, R.L. Edwards and D. Heslop, 2020. Coupling of Indo-Pacific climate variability over the last millennium. Nature, 579: 385-392. DOI: https://doi.org/10.1038/s41586-020-2084-4.
10.1038/s41586-020-2084-432188937Baek, E.R., M. Kim, D.J. Kang and J.H. Kang, 2024. Distribution characteristics of microplastics in the surface mixed layer of the western Indian Ocean. Deep. Res. Part II Top. Stud. Oceanogr, 218: DOI: https://doi.org/10.1016/j.dsr2.2024.105424.
10.1016/j.dsr2.2024.105424Beal, L.M., J. Vialard, M.K. Roxy, J. Li, M. Andres, H. Annamalai, M. Feng, W. Han, R. Hood, T. Lee, M. Lengaigne, R. Lumpkin, Y. Masumoto, M.J. McPhaden, M. Ravichandran, T. Shinoda, B.M. Sloyan, P.G. Strutton, A.C. Subramanian, T. Tozuka, C.C. Ummenhofer, A.S. Unnikrishnan, J. Wiggert, L. Yu, L. Cheng, D.G. Desbruyères and V. Parvathi, 2020. A Road Map to IndOOS-2: Better Observations of the Rapidly Warming Indian Ocean. Bull. Am. Meteorol. Soc., 101: E1891-E1913. DOI: https://doi.org/https://doi.org/10.1175/BAMS-D-19-0209.1.
10.1175/BAMS-D-19-0209.1Bercovici, S.K., A.P. McNichol, L. Xu and D.A. Hansell, 2018. Radiocarbon Content of Dissolved Organic Carbon in the South Indian Ocean. Geophys. Res. Lett., 45: 872-879. DOI: https://doi.org/10.1002/2017GL076295.
10.1002/2017GL076295Cai, W., A. Santoso, G. Wang, E. Weller, L. Wu, K. Ashok, Y. Masumoto and T. Yamagata, 2014. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature, 510: 254-258. DOI: https://doi.org/10.1038/nature13327.
10.1038/nature1332724919920Dilmahamod, A.F., J.C. Hermes and C.J.C. Reason, 2016. Chlorophyll-a variability in the Seychelles-Chagos Thermocline Ridge: Analysis of a coupled biophysical model. J. Mar. Syst., 154: 220-232. DOI: https://doi.org/10.1016/j.jmarsys.2015.10.011.
10.1016/j.jmarsys.2015.10.011Hermes, J.C. and C.J.C. Reason, 2008. Annual cycle of the South Indian Ocean (Seychelles-Chagos) thermocline ridge in a regional ocean model. J. Geophys. Res. Ocean, 113: 1-10. DOI: https://doi.org/10.1029/2007JC004363.
10.1029/2007JC004363Hermes, J.C. and C.J.C. Reason, 2009. The sensitivity of the seychelles-chagos thermocline ridge to large-scale wind anomalies. ICES J. Mar. Sci., 66: 1455-1466. DOI: https://doi.org/10.1093/icesjms/fsp074.
10.1093/icesjms/fsp074Hood, R.R., C.C. Ummenhofer, H.E. Phillips and J. Sprintall, 2024. Chapter 1 - Introduction to the Indian Ocean, in: Ummenhofer, C.C., Hood, R.R.B.T.-T.I.O. and its R. in the G.C.S. (Eds.), . Elsevier, pp. 1-31. DOI: https://doi.org/https://doi.org/10.1016/B978-0-12-822698-8.00015-9.
10.1016/B978-0-12-822698-8.00015-9Horii, T., H. Hase, I. Ueki and Y. Masumoto, 2008. Oceanic precondition and evolution of the 2006 Indian Ocean dipole. Geophys. Res. Lett., 35: 1-6. DOI: https://doi.org/10.1029/2007GL032464.
10.1029/2007GL032464Hormann, V., L.R. Centurioni and A.L. Gordon, 2019. Freshwater export pathways from the Bay of Bengal. Deep. Res. Part II Top. Stud. Oceanogr, 168: 104645. DOI: https://doi.org/10.1016/j.dsr2.2019.104645.
10.1016/j.dsr2.2019.104645Izumo, T., C. de B. Montegut, J.J. Luo, S.K. Behera, S. Masson and T. Yamagata, 2008. The role of the Western Arabian Sea upwelling in Indian monsoon rainfall variability. J. Clim., 21: 5603-5623. DOI: https://doi.org/10.1175/2008JCLI2158.1.
10.1175/2008JCLI2158.1Jeong, J.H., B.M. Kim, C.H. Ho and Y.H. Noh, 2008. Systematic variation in wintertime precipitation in East Asia by MJO-induced extratropical vertical motion. J. Clim., 21: 788-801. DOI: https://doi.org/10.1175/2007JCLI1801.1.
10.1175/2007JCLI1801.1Kang, M., J.H. Kang, M. Kim, S.H. Nam, Y. Choi and D.J. Kang, 2021. Sound Scattering Layers Within and Beyond the Seychelles-Chagos Thermocline Ridge in the Southwest Indian Ocean. Front. Mar. Sci., 8: 1-18. DOI: https://doi.org/10.3389/fmars.2021.769414.
10.3389/fmars.2021.769414Kang, M., S. Oh, W. Oh, D.J. Kang, S.H. Nam and K. Lee, 2024a. Acoustic characterization of fish and macroplankton communities in the seychelles-chagos thermocline ridge of the southwest Indian ocean. Deep. Res. Part II Top. Stud. Oceanogr, 213: 105356. DOI: https://doi.org/10.1016/j.dsr2.2023.105356.
10.1016/j.dsr2.2023.105356Kang, S., H. Zhang, Y. Ding, M. Zhao, Y.B. Son, P. Son, T.K. Rho and D.J. Kang, 2024b. Contribution of aged organic carbon to suspended particulate organic carbon in the western equatorial Indian Ocean. Front. Mar. Sci., 11: 1-9. DOI: https://doi.org/10.3389/fmars.2024.1336132.
10.3389/fmars.2024.1336132Kikuchi, K., 2021. The boreal summer intraseasonal oscillation (Bsiso): A review. J. Meteorol. Soc. Japan, 99: 933-972. DOI: https://doi.org/10.2151/jmsj.2021-045.
10.2151/jmsj.2021-045Kim, M., J.H. Kang, T.K. Rho, H.W. Kang, D.J. Kang, J.H. Park and P. Son, 2022. Mesozooplankton community variability in the Seychelles-Chagos Thermocline Ridge in the western Indian Ocean. J. Mar. Syst., 225: 103649. DOI: https://doi.org/10.1016/j.jmarsys.2021.103649.
10.1016/j.jmarsys.2021.103649Kim, S., K.J. Ha, R. Ding and J. Li, 2018. Re-examination of the decadal change in the relationship between the East Asian Summer Monsoon and Indian Ocean SST. Atmosphere (Basel), 9. DOI: https://doi.org/10.3390/atmos9100395.
10.3390/atmos9100395Kim, S.H., K. Ra, K.T. Kim, H. Jeong, J. Lee, D.J. Kang, T. Rho and I. Kim, 2019. R/V Isabu-Based First Ultraclean Seawater Sampling for Ocean Trace Elements in Korea. Ocean Sci. J., 54: 673-684. DOI: https://doi.org/10.1007/s12601-019-0030-x.
10.1007/s12601-019-0030-xKim, S.-K., H.-J. Park, S.-I. An, C. Liu, W. Cai, A. Santoso and J.-S. Kug, 2024. Decreased Indian Ocean Dipole variability under prolonged greenhouse warming. Nat. Commun., 15: 2811. DOI: https://doi.org/10.1038/s41467-024-47276-7.
10.1038/s41467-024-47276-738561343PMC10985080Kim, Y., T.K. Rho and D.J. Kang, 2021. Oxygen isotope composition of seawater and salinity in the western Indian Ocean: Implications for water mass mixing. Mar. Chem., 237: 104035. DOI: https://doi.org/10.1016/j.marchem.2021.104035.
10.1016/j.marchem.2021.104035Kim, J., Y. Kim, H.W. Kang, S.H. Kim, T.K. Rho and D.J. Kang, 2020. Tracing water mass fractions in the deep western Indian Ocean using fluorescent dissolved organic matter. Mar. Chem., 218: 103720. DOI: https://doi.org/10.1016/j.marchem.2019.103720.
10.1016/j.marchem.2019.103720Lan, K.W., K. Evans and M.A. Lee, 2013. Effects of climate variability on the distribution and fishing conditions of yellowfin tuna (Thunnus albacares) in the western Indian Ocean. Clim. Change, 119: 63-77. DOI: https://doi.org/10.1007/s10584-012-0637-8.
10.1007/s10584-012-0637-8Lee, E., C. Kim and H. Na, 2022. Suppressed Upwelling Events in the Seychelles-Chagos Thermocline Ridge of the Southwestern Tropical Indian Ocean. Ocean Sci. J., 57: 305-313. DOI: https://doi.org/10.1007/s12601-022-00075-x.
10.1007/s12601-022-00075-xLee, S.-K., W. Park, M.O. Baringer, A.L. Gordon, B. Huber and Y. Liu, 2015. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci., 8: 445-449. DOI: https://doi.org/10.1038/ngeo2438.
10.1038/ngeo2438Lee, T., 2004. Decadal weakening of the shallow overturning circulation in the South Indian Ocean. Geophys. Res. Lett., 31: 1-5. DOI: https://doi.org/10.1029/2004GL020884.
10.1029/2004GL020884Liu, S. and A. Duan, 2017. Impacts of the leading modes of tropical Indian Ocean sea surface temperature anomaly on sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer. J. Meteorol. Res., 31: 171-186. DOI: https://doi.org/10.1007/s13351-016-6093-z.
10.1007/s13351-016-6093-zMarsac, F., B. Everett, U. Shahid and P.G. Strutton, 2024. Chapter 11 - Indian Ocean primary productivity and fisheries variability, in: Ummenhofer, C.C., Hood, R.R.B.T.-T.I.O. and its R. in the G.C.S. (Eds.), Elsevier, pp. 245-264. DOI: https://doi.org/https://doi.org/10.1016/B978-0-12-822698-8.00019-6.
10.1016/B978-0-12-822698-8.00019-6McCreary, J.P., P.K. Kundu and R.L. Molinari, 1993. A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Prog. Oceanogr., 31: 181-244. DOI: https://doi.org/https://doi.org/10.1016/0079-6611(93)90002-U.
10.1016/0079-6611(93)90002-UMcPhaden, M.J. and M. Nagura, 2014. Indian Ocean dipole interpreted in terms of recharge oscillator theory. Clim. Dyn., 42: 1569-1586. DOI: https://doi.org/10.1007/s00382-013-1765-1.
10.1007/s00382-013-1765-1McPhaden, M.J., Y. Wang and M. Ravichandran, 2015. Volume transports of the Wyrtki jets and their relationshipto the Indian Ocean Dipole. J. Geophys. Res. Ocean., 120: 5302-2317. DOI: https://doi.org/10.1002/2015JC010901.
10.1002/2015JC010901Moustahfid, H., F. Marsac and A. Gangopadhyay, 2018. Climate change impacts, vulnerabilities and adaptations: Western Indian Ocean marine fisheries, in: Impact of Climate Change on Fisheries and Aquaculture. Food and agriculture organization of the United Nation (FAO), Rome.
Mubarrok, S., F. Azminuddin and C.J. Jang, 2023. Assessment of thermocline depth bias in the Seychelles-Chagos Thermocline Ridge of the Southwestern Indian Ocean simulated by the CMIP6 models. Front. Mar. Sci., 10: 1-26. DOI: https://doi.org/10.3389/fmars.2023.1239885.
10.3389/fmars.2023.1239885Saji, N.H. and T. Yamagata, 2003. Possible impacts of Indian Ocean Dipole mode events on global climate. Clim. Res., 25: 151-169. DOI: https://doi.org/10.3354/cr025151.
10.3354/cr025151Saji, N.H., B.N. Goswami, P.N. Vinayachandran and T. Yamagata, 1999. A dipole mode in the tropical Indian Ocean. Nature, 401: 360-363. DOI: https://doi.org/10.1038/43854.
10.1038/4385416862108Schott, F.A., S.P. Xie and J.P. McCreary, 2009. Indian ocean circulation and climate variability. Rev. Geophys., 47: 1-46. DOI: https://doi.org/10.1029/2007RG000245.
10.1029/2007RG000245Seo, J., I. Kim, D.J. Kang, H. Lee, J.Y. Choi, K. Ra, T.K. Rho, K. Park and S.H. Kim, 2024. Particulate organic carbon export fluxes across the Seychelles-Chagos thermocline ridge in the western Indian Ocean using 234Th as a tracer. Front. Mar. Sci., 10: 1-9. DOI: https://doi.org/10.3389/fmars.2023.1288422.
10.3389/fmars.2023.1288422Soares, M.A., P.V. Bhaskar, R.K. Naik, D. Dessai, J. George, M. Tiwari and N. Anilkumar, 2015. Latitudinal δ13C and δ15N variations in particulate organic matter (POM) in surface waters from the Indian Ocean sector of Southern Ocean and the Tropical Indian Ocean in 2012. Deep. Res. Part II Top. Stud. Oceanogr., 118: 186-196. DOI: https://doi.org/10.1016/j.dsr2.2015.06.009.
10.1016/j.dsr2.2015.06.009Subha Anand, S., R. Rengarajan and V.V.S.S. Sarma, 2018. 234Th-Based Carbon Export Flux Along the Indian GEOTRACES GI02 Section in the Arabian Sea and the Indian Ocean. Global Biogeochem. Cycles, 32: 417-436. DOI: https://doi.org/10.1002/2017GB005847.
10.1002/2017GB005847Takaya, Y., I. Ishikawa, C. Kobayashi, H. Endo and T. Ose, 2020. Enhanced Meiyu-Baiu Rainfall in Early Summer 2020: Aftermath of the 2019 Super IOD Event. Geophys. Res. Lett., 47: 1-9. DOI: https://doi.org/10.1029/2020GL090671.
10.1029/2020GL090671Talley, L.D. and J. Sprintall, 2005. Deep expression of the Indonesian Throughflow: Indonesian Intermediate Water in the South Equatorial Current. J. Geophys. Res. Ocean., 110: 1-30. DOI: https://doi.org/10.1029/2004JC002826.
10.1029/2004JC002826Ummenhofer, C.C., R. Geen, R.F. Denniston and M.P. Rao, 2024. Chapter 3 - Past, present, and future of the South Asian monsoon, in: Ummenhofer, C.C., Hood, R.R.B.T.-T.I.O. and its R. in the G.C.S. (Eds.), . Elsevier, pp. 49-78. DOI: https://doi.org/https://doi.org/10.1016/B978-0-12-822698-8.00013-5.
10.1016/B978-0-12-822698-8.00013-5Vialard, J., J.P. Duvel, M.J. McPhaden, P. Bouruet-Aubertot, B. Ward, E. Key, D. Bourras, R. Weller, P. Minnett, A. Weill, C. Cassou, L. Eymard, T. Fristedt, C. Basdevant, Y. Dandonneau, O. Duteil, T. Izumo, C. de Boyer Montégut, S. Masson, F. Marsac, C. Menkes and S. Kennan, 2009. Cirene: Air-Sea Interactions in the Seychelles-Chagos Thermocline Ridge Region. Bull. Am. Meteorol. Soc., 90: 45-62. DOI: https://doi.org/https://doi.org/10.1175/2008BAMS2499.1.
10.1175/2008BAMS2499.1Wang, C., 2019. Three-ocean interactions and climate variability: a review and perspective. Clim. Dyn., 53: 5119-5136. DOI: https://doi.org/10.1007/s00382-019-04930-x.
10.1007/s00382-019-04930-xWang, G. and W. Cai, 2020. Two-year consecutive concurrences of positive Indian Ocean Dipole and Central Pacific El Niño preconditioned the 2019/2020 Australian "black summer" bushfires. Geosci. Lett., 7: DOI: https://doi.org/10.1186/s40562-020-00168-2.
10.1186/s40562-020-00168-2Wang, G., W. Cai and A. Santoso, 2024. Variability of the Indian Ocean Dipole post-2100 reverses to a reduction despite persistent global warming. Nat. Commun., 15: 1-6. DOI: https://doi.org/10.1038/s41467-024-49401-y.
10.1038/s41467-024-49401-y38866736PMC11169280Wibawa, T.A., P. Lehodey and I. Senina, 2017. Standardization of a geo-referenced fishing data set for the Indian Ocean bigeye tuna, Thunnus obesus (1952-2014). Earth Syst. Sci. Data, 9: 163-179. DOI: https://doi.org/10.5194/essd-9-163-2017.
10.5194/essd-9-163-2017Wu, G., A. Duan, Y. Liu, J. Mao, R. Ren, Q. Bao, B. He, B. Liu and W. Hu, 2015. Tibetan Plateau climate dynamics: recent research progress and outlook. Natl. Sci. Rev., 2: 100-116. DOI: https://doi.org/10.1093/nsr/nwu045.
10.1093/nsr/nwu045Wu, Y.L., K.W. Lan, K. Evans, Y.J. Chang and J.W. Chan, 2022. Effects of decadal climate variability on spatiotemporal distribution of Indo-Pacific yellowfin tuna population. Sci. Rep., 12: 1-13. DOI: https://doi.org/10.1038/s41598-022-17882-w.
10.1038/s41598-022-17882-w35962132PMC9374684Wyrtki, K., 1973. An Equatorial Jet in the Indian Ocean. Science, 181: 262-264.
10.1126/science.181.4096.26217730941Zhang, C., 2013. Madden-julian oscillation: Bridging weather and climate. Bull. Am. Meteorol. Soc., 94: 1849-1870. DOI: https://doi.org/10.1175/BAMS-D-12-00026.1.
10.1175/BAMS-D-12-00026.1Zhao, J., J. Zhou, K. Xiong and G. Feng, 2019. Relationship between Tropical Indian Ocean SSTA in Spring and Precipitation of Northeast China in Late Summer. J. Meteorol. Res., 33: 1060-1074. DOI: https://doi.org/10.1007/s13351-019-9026-9.
10.1007/s13351-019-9026-9- Publisher :The Korean Society of Oceanography
- Publisher(Ko) :한국해양학회
- Journal Title :The Sea Journal of the Korean Society of Oceanography
- Journal Title(Ko) :한국해양학회지 바다
- Volume : 29
- No :4
- Pages :172-188
- Received Date : 2024-08-05
- Revised Date : 2024-11-01
- Accepted Date : 2024-11-19
- DOI :https://doi.org/10.7850/jkso.2024.29.4.172