All Issue

2021 Vol.26, Issue 4 Preview Page

Article

30 November 2021. pp. 307-326
Abstract
References
1
국립해양조사원(KHOA), 2021. "바다누리 해양정보 서비스". http://www.khoa.go.kr/oceangrid/gis/category/reference/distribution.
2
김마가, 최진용, 방재홍, 이재주, 2019. 임계치 모형과 인공신경망 모형을 이용한 실시간 저수위 수위자료의 이상치 탐지. 한국농공학회, 61(1): 107-120.
3
Bell, C., J.M. Vassie and P.L. Woodworth, 1999. POL/PSMSL Tidal Analysis Software Kit 2000 (TASK-2000). edited by 2000UKCCMS Proudman Oceanographic Laboratory Permanent Service for Mean Sea Level.
4
Castelão, G.P., 2021. A machine learning approach to quality control oceanographic data. Computers & Geosciences, 155. 10.1016/j.cageo.2021.104803
5
Fourrier, M., L. Coppola, H. Claustre, F. D'Ortenzio, R. Sauzède and J.-P. Gattuso, 2020. A Regional Neural Network Approach to Estimate Water-Column Nutrient Concentrations and Carbonate System Variables in the Mediterranean Sea: CANYON-MED. Frontiers in Marine Science 7. 10.3389/fmars.2020.00620
6
Goyal, S., T. Jain and Dr. N. Tyagi, 2018. Artificial Neural Network: A Review and its Application in Managing Water Quality Control. International Journal of Scientific Development and Research, 3(6).
7
Guan, Y. and T. Plötz, 2017. Ensembles of Deep LSTM Learners for Activity Recognition Using Wearables. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(2): 1-28. 10.1145/3090076
8
Hochreiter, S. and J. Schmidhuber, 1997. Long Short-Term Memory. Neural Computation, 9(8): 1735-1780. 10.1162/neco.1997.9.8.17359377276
9
Just, A.C., M.M. De Carli, A. Shtein, M. Dorman, A. Lyapustin and I. Kloog, 2018. Correcting Measurement Error in Satellite Aerosol Optical Depth with Machine Learning for Modeling PM2.5 in the Northeastern USA. Remote Sens (Basel), 10(5). 10.3390/rs1005080331057954PMC6497138
10
Kim, H.J., S.M. Park, B.J. Choi, S.H. Moon and Y.H. Kim, 2020. Spatiotemporal Approaches for Quality Control and Error Correction of Atmospheric Data through Machine Learning. Comput Intell Neurosci, 2020: 7980434. 10.1155/2020/798043432256552PMC7086422
11
Linares-Rodriguez, A., J.A. Ruiz-Arias, D. Pozo-Vazquez and J. Tovar-Pescador, 2013. An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images. Energy, 61: 636-645. 10.1016/j.energy.2013.09.008
12
Liu, J., J. Gu, H. Li and K.H. Carlson, 2020. Machine learning and transport simulations for groundwater anomaly detection. Journal of Computational and Applied Mathematics, 380. 10.1016/j.cam.2020.112982
13
López-Lineros, M., J. Estévez, J.V. Giráldez and A. Madueño, 2014. A new quality control procedure based on non-linear autoregressive neural network for validating raw river stage data. Journal of Hydrology, 510: 103-109. 10.1016/j.jhydrol.2013.12.026
14
Miau, S. and W.-H. Hung, 2020. River Flooding Forecasting and Anomaly Detection Based on Deep Learning. IEEE Access 8:198384-198402. 10.1109/ACCESS.2020.3034875
15
Murray, M.T., 1964. A General Method for the Analysis of Hourly Heights of Tide. International Hydrographic Review, 41(2): 91-101.
16
Omar, S., A. Ngadi and H.H. Jebur, 2013. Machine Learning Techniques for Anomaly Detection: An Overview. International Journal of Computer Applications, 79(2). 10.5120/13715-1478
17
Opitz, D. and R. Maclin, 1999. Popular Ensemble Learning: An Empirical Study. Journal of Artificial Intelligence Research, 11: 169-98. 10.1613/jair.614
18
Pastore, V.P., T.G. Zimmerman, S.K. Biswas and S. Bianco, 2020. Annotation-free learning of plankton for classification and anomaly detection. Sci Rep, 10(1): 12142. 10.1038/s41598-020-68662-332699302PMC7376023
19
Russell, S. and P. Norvig, 2010. Artificial Intelligence: A Modern Approach, Third Edition. Upper Saddle River, New Jersey: Prentice Hall, c2010.
20
Saini, S. and Preeti, 2015. Advance Applications of Artificial Neural Network. Journal of Basic and Applied Engineering Research, 2(11): 1001-1005.
21
Sciuto, G., B. Bonaccorso, A. Cancelliere and G. Rossi, 2009. Quality control of daily rainfall data with neural networks. Journal of Hydrology, 364(1-2): 13-22. 10.1016/j.jhydrol.2008.10.008
22
UNESCO (United Nations Educational, Scientific and Cultural Organization). 2013. Ocean Data Standards, Vol.3: Recommendation for a Quality Flag Scheme for the Exchange of Oceanographic and Marine Meteorological Data. (IOC Manuals and Guides, 54, Vol. 3.).
23
Wang, Y., L. Han, W. Liu, S. Yang and Y. Gao, 2019. Study on wavelet neural network based anomaly detection in ocean observing data series. Ocean Engineering, 186. 10.1016/j.oceaneng.2019.106129
24
Yu, J.B. and L.F. Xi, 2009. A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes. Expert Systems with Applications, 36(1): 909-921. 10.1016/j.eswa.2007.10.003
Information
  • Publisher :The Korean Society of Oceanography
  • Publisher(Ko) :한국해양학회
  • Journal Title :The Sea Journal of the Korean Society of Oceanography
  • Journal Title(Ko) :한국해양학회지 바다
  • Volume : 26
  • No :4
  • Pages :307-326
  • Received Date :2021. 09. 15
  • Revised Date :2021. 11. 22
  • Accepted Date : 2021. 11. 23
Journal Informaiton The Sea Journal of the Korean Society of Oceanography The Sea Journal of the Korean Society of Oceanography
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close